Édouard Lucas
Biografía | |
---|---|
Nacemento | 4 de abril de 1842 Amiens, Francia |
Morte | 3 de outubro de 1891 (49 anos) París, Francia |
Causa da morte | sepse |
Educación | Escola Normal Superior de Amiens (Francia) |
Q89547790 | Números de Lucas, xogo das Torres de Hanoi |
Actividade | |
Campo de traballo | Teoría de números, matemáticas, sucesión de Fibonacci e jogos matemáticos (pt) |
Ocupación | matemático, mestre, profesor universitario |
Empregador | Lycée Charlemagne (en) (1890–1891) Lycée Saint-Louis (pt) (1879–1890) Observatório de Paris (pt) (–1869) |
Obra | |
Obras destacables | |
François Édouard Anatole Lucas, nado en Amiens o 4 de abril de 1842 e finado en París o 3 de outubro de 1891, coñecido como Édouard Lucas, foi un recoñecido matemático francés. Traballou no Observatorio de París, e máis tarde foi profesor de matemáticas na capital do Sena. Lémbraselle, sobre todo, polos seus traballos acerca da sucesión de Fibonacci, que el denominou desa maneira, e polo test de primalidade que leva o seu nome, pero tamén porque foi o inventor dalgúns xogos recreativos matemáticos moi coñecidos, como o das Torres de Hanoi.
Biografía
[editar | editar a fonte]Danis Édouard Lucas foi educado na Escola Normal Superior de Amiens. Posteriormente traballou con Le Verrier no observatorio de París. Serviu como oficial de artillaría no exército francés durante a guerra de 1870 contra Prusia. Tras a derrota francesa, Lucas volveu a París, onde se dedicou ao ensino das matemáticas en dous institutos parisienses: o Liceo de San Luís e o Liceo Carlomagno.
Lucas morreu dunha forma un tanto peculiar, vítima dunha probable septicemia a consecuencia dun corte nunha fazula sufrido nun banquete, o que lle produciu unha inflamación que se complicou con fatais consecuencias.
Teoría de números
[editar | editar a fonte]Números de Fibonacci e Lucas
[editar | editar a fonte]Posiblemente, Lucas sexa principalmente coñecido polo estudo das chamadas sucesións xeneralizadas de Fibonacci, que comezan por dous enteiros positivos calquera e a partir de aí, cada número da sucesión é suma dos dous precedentes.
A sucesión máis sinxela é a coñecida como sucesión de Fibonacci, a saber, 1, 1, 2, 3, 5, 8, 13, 21... Durante o devandito estudo Édouard Lucas chegou a formular unha ecuación para atopar o enésimo termo da celebérrima sucesión sen ter que chegar a calcular todos os termos predecesores. Así, segundo a formulación de Lucas:
A inmediatamente máis sinxela, 1, 3, 4, 7, 11, 18..., é hoxe coñecida por sucesión de Lucas.
Números de Mersenne
[editar | editar a fonte]Édouard Lucas tamén realizou un estudo bastante avanzado sobre outros aspectos da teoría de números e en especial sobre o problema da primalidade. Descubriu un método para comprobar a primalidade dos números da forma onde é primo (coñecidos como números de Mersenne). En 1876, con este método, probou que o número é un número primo (o maior número primo coñecido até mediados do século XX e o maior que foi calculado sen a axuda dun computador). O seu método foi refinado por Derrick Henry Lehmer en 1930 e, hoxe día, é a base dunha das probas de primalidade clásicas máis coñecidas.
O test de Lucas-Lehmer segue a seguinte secuencia de pasos:
Sexa
onde se define coa fórmula recursiva .
Dado un número de Mersenne con primo, é primo se e só se é divisible por .
En realidade, e a pesar de contar cun resultado como o anterior, a proeza de Lucas foi terriblemente difícil xa que o cálculo da división había de ser monstruoso: é xa un número moi grande e é inmenso (da orde de ). De feito, Lucas non chegou a calcular realmente , utilizando determinados atallos e resultados intermedios para demostrar a divisibilidade de por
Matemáticas recreativas
[editar | editar a fonte]Lucas sempre sentiu apaixonado polas matemáticas recreativas. A súa serie de Récréations mathématiques (publicada entre 1882 e 1894) é hoxe día un verdadeiro clásico para os afeccionados.
Resolveu o Problema dos Aros Chineses (tamén coñecido como baguenaudier) descrito polo matemático italiano Cardano na súa obra de 1550 De Subtilitate Rerum.
Inventou o problema das Torres de Hanoi. Este último comercializouno en 1883 baixo o pseudónimo Prof. N. Claus de Siam, mandarín do Colexio de Li-Sou-Stian (dous anagramas de Lucas d'Amiens e Saint Louis respectivamente).
Véxase tamén
[editar | editar a fonte]A Galipedia ten un portal sobre: Francia |
Outros artigos
[editar | editar a fonte]- Test de Lucas
- Teorema de Lucas
- Torres de Hanoi
- Números de Lucas
- Problema das balas de canón
- Timbiriche (xogo)
Ligazóns externas
[editar | editar a fonte]- O'Connor, John J.; Robertson, Edmund F. "François Edouard Anatole Lucas". MacTutor History of Mathematics archive. University of St Andrews..
- Gardner, Martin (1983). "Capítulo 13: Números de Fibonacci y de Lucas". Circo matemático (en es)). Madrid: Alianza Editorial, El libro de bolsillo 937. ISBN 84-206-1937-X.