Saltar ao contido

Teorema de Brun-Titchmarsh

Na Galipedia, a Wikipedia en galego.

Na teoría analítica de números, o teorema de Brun-Titchmarsh, que recibe o nome de Viggo Brun e Edward Charles Titchmarsh, é un límite superior da distribución dos números primos en progresión aritmética.

Enunciado

[editar | editar a fonte]

Sexa a función que conta o número de primos p congruentes cun módulo q con p ≤ x . Entón

para todos os q < x .

O resultado probouse por métodos de cribo por Montgomery e Vaughan; un resultado anterior de Brun e Titchmarsh obtivo unha versión máis feble desta desigualdade cun factor multiplicativo adicional de .

Se q é relativamente pequeno, por exemplo, , daquela existe un límite mellor:

Este resultado débese a Y. Motohashi (1973). Utilizou unha estrutura bilineal no termo de erro no cribo de Selberg, descuberta por el mesmo.

Comparación co teorema de Dirichlet

[editar | editar a fonte]

Pola contra, o teorema de Dirichlet sobre progresións aritméticas dá un resultado asintótico, que pode expresarse na forma

pero só se pode demostrar que se cumpre para o rango máis restrinxido q < (log x ) c para a constante c: este é o teorema de Siegel-Walfisz .

Véxase tamén

[editar | editar a fonte]

Bibliografía

[editar | editar a fonte]