Sistema LTI
A teoría lineal invariante no tempo, comunmente coñecida como teoría do sistema LTI, investiga a resposta dun sistema lineal e invariante no tempo a un sinal de entrada arbitrario. As traxectorias destes sistemas mídense e rastrexan comunmente a medida que avanzan no tempo (por exemplo, unha forma de onda acústica), pero en aplicacións como o procesamento de imaxes e a teoría de campo, os sistemas LTI tamén teñen traxectorias en dimensións espaciais. Por tanto, estes sistemas tamén se chaman linealmente invariantes na translación para dar á teoría o alcance máis xeral. No caso de sistemas xenéricos de tempo discreto (é dicir, mostreados), linealmente invariante no desprazamento é o termo correspondente. Un bo exemplo dos sistemas LTI son os circuítos eléctricos que poden estar formados por resistencias, condensadores e inductores[1]. Utilizouse en matemáticas aplicadas e ten aplicacións directas en espectroscopia RMN, sismoloxía, circuítos, procesamento de sinais, teoría de control e outras áreas técnicas.
Propiedades
[editar | editar a fonte]As propiedades definitorias de calquera sistema LTI son a linearidade e a invariancia no tempo.
- A linearidade significa que a relación entre a entrada e a saída do sistema é unha Aplicación linear: Se a entrada produce a resposta , e a entrada produce a resposta , entón a entrada escalada e sumada produce a resposta escalada e sumada onde e son escalares reais. Dedúcese que isto pode estenderse a un número arbitrario de termos, e así para os números reais :
- A entrada produce a saída
- En particular,
- A entrada produce a saída
- onde e son escalares e entradas que varían nun continuo indexado por . Por tanto, se unha función de entrada pode representarse mediante un continuo de funcións de entrada, combinadas "linealmente", como se mostra, entón a función de saída correspondente pode representarse mediante o continuo correspondente de funcións de saída, escaladas e sumadas da mesma maneira.
- A invariancia de tempo significa que se aplicamos unha entrada ao sistema agora ou T segundos a partir de agora, a saída será idéntica, excepto por un atraso de T segundos. É dicir, se a saída debida á entrada é , entón a saída debida á entrada é . Por tanto, o sistema é invariante no tempo porque a saída non depende do tempo particular en que se aplica a entrada.
Notas
[editar | editar a fonte]- ↑ Hespanha 2009, p. 78.