Ecuación de Schrödinger
![]() | Este artigo precisa de máis fontes ou referencias que aparezan nunha publicación acreditada que poidan verificar o seu contido, como libros ou outras publicacións especializadas no tema. Por favor, axude mellorando este artigo. |
A ecuación de Schrödinger, desenvolvida polo físico austríaco Erwin Rudolf Josef Alexander Schrödinger en 1925, describe a dependencia temporal dos sistemas mecanocuánticos. É de importancia central na teoría da mecánica cuántica, onde representa un papel que se pode considerar semellante ás leis de Newton na mecánica clásica.
Na mecánica cuántica, o conxunto de todos os estados posibles nun sistema descríbese por un espazo de Hilbert complexo, e calquera estado instantáneo dun sistema descríbese por un vector unitario nese espazo. Este vector unitario codifica as probabilidades dos resultados de todas as posibles medidas feitas ó sistema. Como o estado do sistema xeralmente cambia co tempo, o vector estado é unha función do tempo. Con todo, debe recordarse que os valores dun vector de estado son diferentes para distintos lugares. Noutras palabras, tamén é unha función de x (ou, tridimensionalmente, de r). A ecuación de Schrödinger dá unha descrición cuantitativa da taxa de cambio no vector estado.
Usando a notación bra-ket de Dirac, denotamos ese vector de estado instantáneo a tempo t como |ψ(t)〉. A ecuación de Schrödinger é, entón: (Schrodinger Equation)
onde i é o número imaxinario unidade, é a constante de Planck dividida por 2π(constante reducida de Plank), e o Hamiltoniano H é un operador linear hermítico (auto-adxunto) que actúa sobre o espazo de estados. O hamiltoniano describe a enerxía total do sistema. Como coa forza na segunda lei de Newton, a súa forma exacta non a dá a ecuación de Schrödinger, e debe ser determinada de xeito independente, a partir das propiedades físicas do sistema cuántico.
Para máis información do papel dos operadores en mecánica cuántica, ver a formulación matemática da mecánica cuántica.
A ecuación de Schrödinger independente do tempo
[editar | editar a fonte]Para cada hamiltoniano (se a enerxía potencial é independente do tempo), existe un conxunto de estados cuánticos, coñecidos como estados propios para a enerxía que satisfán a ecuación de valores propios
onde
Solucións da ecuación de Schrödinger
[editar | editar a fonte]Pódense obter solucións analíticas da ecuación de Schrödinger independente do tempo para varios sistemas relativamente sinxelos. Estas solucións serven para entender mellor a natureza dos fenómenos cuánticos, e en ocasións son unha aproximación razoable ó comportamento de sistemas máis complexos (como en mecánica estatística aproxímanse as vibracións moleculares como osciladores harmónicos). Algunhas das solucións analíticas máis comúns son:
- Números cuánticos
- A partícula nunha caixa
- A partícula nun anel
- A partícula nun potencial de simetría esférica
- O oscilador harmónico cuántico
- O átomo de hidróxeno
- A partícula nunha rede monodimensional
Con todo, para moitos sistemas non hai solución analítica á ecuación de Schrödinger. Nestes casos, hai que recorrer a solucións aproximadas, como:
- A teoría perturbacional
- O método variacional
- As solucións Hartree-Fock
- Os métodos cuánticos de Monte-Carlo
Véxase tamén
[editar | editar a fonte]Outros artigos
[editar | editar a fonte]![]() |
Este artigo sobre física é, polo de agora, só un bosquexo. Traballa nel para axudar a contribuír a que a Galipedia mellore e medre.
Existen igualmente outros artigos relacionados con este tema nos que tamén podes contribuír. |
![]() |
Este artigo sobre matemáticas é, polo de agora, só un bosquexo. Traballa nel para axudar a contribuír a que a Galipedia mellore e medre.
Existen igualmente outros artigos relacionados con este tema nos que tamén podes contribuír. |